Topics in the June 2012 Exam Paper for CHEM1903

Click on the links for resources on each topic.

2012-J-2:

- Bonding in H₂ MO theory
- Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O

2012-J-3:

- Atomic Electronic Spectroscopy
- Bonding in O₂, N₂, C₂H₂, C₂H₄ and CH₂O

2012-J-4:

• Nuclear and Radiation Chemistry

2012-J-5:

• Nuclear and Radiation Chemistry

2012-J-6:

- Lewis Structures
- VSEPR

2012-J-7:

• Thermochemistry

2012-J-8:

• First and Second Law of Thermodynamics

2012-J-9:

- Polar Bonds
- Ionic Bonding

2012-J-10:

• Chemical Equilibrium

2012-J-11:

- Electrochemistry
- Batteries and Corrosion

2221(a)

THE UNIVERSITY OF SYDNEY <u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2012

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

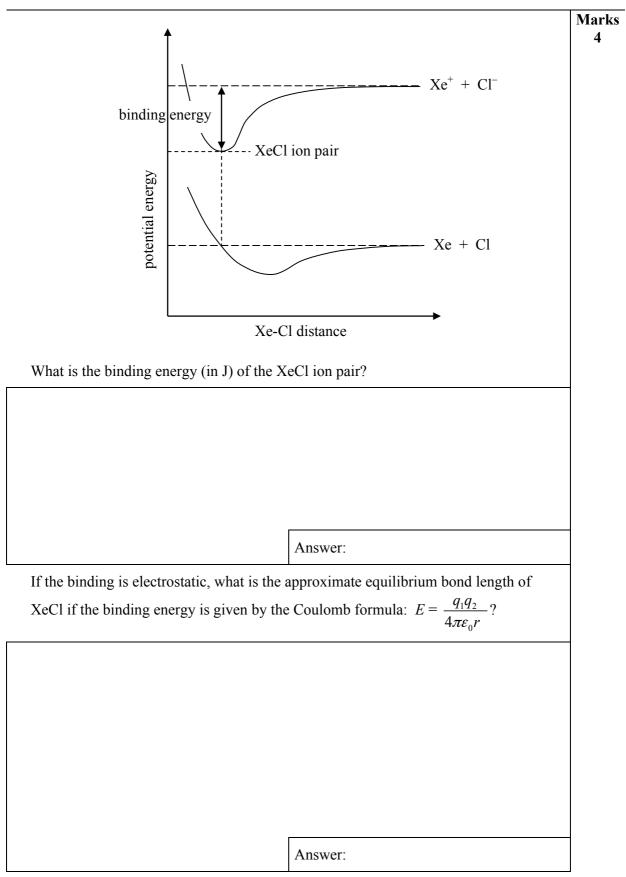
INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17, 20 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks			
Pages	Max	Gained		
2-10	31			


Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	5			
12	6			
13	4			
14	8			
15	8			
16	6			
18	4			
19	6			
21	9			
22	6			
23	7			
Total	69			
Check	Total			

Marks • C₂ is a reaction intermediate observed in flames, comets, circumstellar shells and the 5 interstellar medium. In 2011, a new state of C_2 was observed with 4 parallel spins. How many *valence* electrons are there in C₂? Complete the calculated MO diagram for the lowest energy state of C₂ with 4 parallel spins by inserting the appropriate number of electrons into the appropriate orbitals. 20 σ* 10 π* energy (eV) 0 σ -10 $\bar{\sigma}^{\pi}$ -20 σ -30 What is the bond order of this state of C_2 ? Is this state paramagnetic? Give reasoning. What is the bond order of the ground state of C_2 ?

Marks • An "excimer laser" is a type of ultraviolet laser used for lithography, micromachining 6 and eye surgery. In one type of laser, an electrical discharge through HCl and Xe in a helium buffer gas yields metastable XeCl molecules, described like an ion pair. These then emit 308 nm light and dissociate into Xe and Cl atoms. Ionisation energy Electron affinity element $/ kJ mol^{-1}$ $/ kJ mol^{-1}$ 1170.4 Xe _ Cl 1251.1 -349What energy, in eV, is required to convert a pair of Xe and Cl atoms into Xe⁺ and Cl⁻ ions? Answer: What energy (in eV) is released when the XeCl molecules emit ultraviolet light? Answer:

THIS QUESTION CONTINUES ON THE NEXT PAGE.

²³⁵ U or ²³	³⁹ Pu. The fissi	gy in a nuclear reactor is on products include even nost of the radioactive fi	ry element from zinc thr	ough to the o	
row and of the fol The fissi	the other later llowing daught on reactions ar	ld is concentrated in two in the periodic table. Ide er nuclides of ²³⁵ U by w e triggered by the absorp integration of the short-	entify the missing "sister riting balanced nuclear option of one neutron, and	" products equations.	
¹⁴¹ Ba					
⁹⁵ Sr					
contamir modellec	nated by longer a simply by the	ducts are short lived, an -lived species. The radi exponential decay of th des are given in the table	oactivity of spent fuel ca e 137 Cs and 90 Sr. The %	an be	
	nuclide	%Yield per fission eve	nt Half-life (years)		
	⁹⁰ Sr	4.505	28.9		
	¹³⁷ Cs	6.337	30.23		
disposal.	If 3 % of the	rods are stored in ponds mass of used fuel rods c age of the mass is made	onsists of fission produc	ts of ²³⁵ U	
⁹⁰ Sr:		¹³⁷ Cs	3:		
		IESTION CONTINUE	S ON THE NEXT DA		

THIS QUESTION CONTINUES ON THE NEXT PAGE.

CHEM1901

⁹⁰Sr:

2012-J-5 June 2012 Marks What are the specific activities of 90 Sr and 137 Cs in Bq g $^{-1}$? 8 ¹³⁷Cs: Assuming the majority of the activity of a spent fuel rod to be due to these nuclides, what will be the activity of a 1 tonne fuel rod 100 years after placing it in the pond? Answer:

	ng species.	Approximate		_
Formula	Lewis Structure	F-X-F	Name of molecular shape	
		bond angle(s)		-
NF ₃				
				-
$\mathrm{XeF_{3}}^{+}$				
				-
XeF ₄				
XeOF ₄				

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

٠

("coffee cup") calorimeter containing 200 white precipitate is formed. The final ter that the enthalpy of neutralisation of H assuming that the specific heat capacity a	t 47.5 °C is added to a constant pressure 0.0 mL of 0.500 M H ₂ SO ₄ also at 47.5 °C, a mperature of the solution is 46.4 °C. Given ⁺ (aq) and OH ⁻ (aq) is -56.5 kJ mol ⁻¹ , and and density of all solutions involved are the C ⁻¹ g ⁻¹ and $\rho = 1.000$ g mL ⁻¹), calculate the	Marks 4
	Answer:	

Marks • Explain the following phenomena. 6 (a) When O_2 dissolves in water at room temperature, the total entropy of the system decreases. (b) When MgSO₄ is dissolved in water, there is a very small but measurable decrease in volume. (c) A crystal (e.g. of NaCl) in its lowest energy configuration (thermodynamic ground state) will always contain defects at finite temperatures. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

	Marks
Explain, with the aid of a diagram labelling all the key components, how sodium stearate ($C_{17}H_{35}COONa$) can stabilise long-chain non-polar hydrocarbons ("grease") in water.	3
Consider the complex $K_4[Mn(CN)_6]$. Describe and contrast the origin, strength and	_
directionality of the chemical bonds in this compound (a) between C and N; (b) between the manganese and cyanide ions; and (c) between the complex and the potassium counterions.	6
	_

4.5 L flask at 1200 K and the following r $CO(g) + 3H_2(g) =$	hydrogen gas are introduced into a sealed reaction occurs. \rightarrow CH ₄ (g) + H ₂ O(g)
Sometime later, total pressure in the flask	\implies CH ₄ (g) + H ₂ O(g)
	k is 46.4 atm. Calculate the total amount of .
	·
	Answer:
	.4 atm, the flask contains 0.22 mol of CH ₄ . nat was initially introduced into the flask.
	Answer:
same 4.5 L flask contains 0.18 mol of CH	Answer: I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and ion at equilibrium in the previous part of this
ame 4.5 L flask contains 0.18 mol of CH 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
ame 4.5 L flask contains 0.18 mol of CH 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H ₂ at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H_2 at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
same 4.5 L flask contains 0.18 mol of CF 0.65 mol of H_2 at 1200 K. Was the react	I that the reaction is in equilibrium when the H_4 , 0.24 mol of H_2O , 0.82 mol of CO and
me 4.5 L flask contains 0.18 mol of CF 65 mol of H_2 at 1200 K. Was the react	that the reaction is in equilibrium when the H ₄ , 0.24 mol of H ₂ O, 0.82 mol of CO and

CHEM1901

• A voltaic cell is set up at 298 K based on the following half-cell reactions.	Marks 7
$Pt^{2+}(aq) + 2e^{-} \implies Pt(s) \qquad E^{\circ} = +1.18 V$	
$Rh^{3+}(aq) + 3e^{-} \iff Rh(s) \qquad E^{\circ} = +0.76 V$	
Write the overall chemical reaction that takes place in this cell.	
Write the same reaction in shorthand voltaic cell notation.	-
Which metal electrode is acting as the cathode in this reaction?	-
Calculate the potential of this cell at 298 K, in which the concentration of $Pt^{2+}(aq)$ is 0.0544 mmol L ⁻¹ and the concentration of $Rh^{3+}(aq)$ is 0.0393 mmol L ⁻¹ .	
Answer:	1

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°								
Reaction	E° / V							
$\operatorname{Co}^{3^+}(\operatorname{aq}) + e^- \rightarrow \operatorname{Co}^{2^+}(\operatorname{aq})$	+1.82							
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72							
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51							
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50							
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36							
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23							
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18							
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96							
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96							
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92							
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80							
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77							
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53							
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34							
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32							
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15							
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)							
	0 (by definition) -0.04							
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	· · · · · · · · · · · · · · · · · · ·							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s)	-0.04							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.04 -0.13 -0.14 -0.24 -0.40							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \end{array}$							
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$							

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{\log Q} \log Q \text{ (at 25 °C)}$
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n n n n n n n n n n n n n n n n n n n
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_{\rm o}r} N_{\rm A}$	Area of circle = πr^2
$4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$

ACTINOIDS	LANTHANOIDS	Fr [223.0]				_												-	Η		1
La 138.91 89 Actinum Ac [227.0]		Ra [226.0]	88 RADIUM	137.34	56 Barum	87.62	Sr	38 STRONTIUM	40.08	Ca	20	24.31	Mg	12	9.012	Be	4 BERYLLIUM				2
			89-103		57-71	88.91	Y	39	44.96	Sc	21 Scandium										ω
Се 90 ^{тноким} Тh 232.04		Rf [261]	RU	178.49	72 HAFNIUM	91.22	Zr	40	47.88	Ti	22 THANIUM										4
Рг 140.91 91 Ра Ра [231.0]	59 PRASEODYMIUM	Db [262]	M			_						-									J
Nd 144.24 92 иклупим U	60	Sg [263]	106 seaborgium	183.85	7/4 W	95.94	Mo	42	52.00	Cr	24										6
Рт [144.9] 93 мертимим Np [237.0]	61 promethium	Bh [264]	107 BOHRIUM	186.2	7/5 RHENIUM	[98.91]	Tc	43	54.94	Mn	25 manganese										7
Sm 150.4 94 Ри [239.1]	62 samarium	Hs [265]	108	190.2		101.07	Ru	44	55.85	Fe	26 IRON										×
Eu 151.96 95 Аменсим Ат [243.1]	63 Europium	Mt [268]	109	192.22		102.91	Rh		58.93	Co	27										9
Са 157.25 96 Стания [247.1]	64	Ds [281]	110	195.09	78 PLATINUM P4	106.4	Pd	46	58.69	Ż	28 NICKEL										10
	-	Rg [272]	111 ROENTGENIUM	196.97		107.87	Ag	silver	63.55	Cu	29										11
Ть 158.93 97 ввжедылом Вк [247.1]		Cn [285]	-			-															12
Dy 162.50 98 CALFORNIAN Cf [252.1]	66 NSPROSIUM					-						26.98	Al	13	10.81	в	BORON				13
Но 164.93 99 енятерним Ех [252.1]	67			7 207.2	Ph 82	2 118.6	Sn	50	72.59	Ge	GERMANI	28.09	S:	14	12.01	0	CARBON				14
Ег 167.26 100 ^{FERMINN} FERMINN [257.1]	erbium				BISMUTH Bismuth	Ē					2							-			15
Тт 168.93 101 мехоелеми Мd [256.1]	ев				POLONIUN POLONIUN									^				-			16
X					-	-		2							_			-			17
Үb 173.04 102 ^{Nobellum} No [259.1]					ASTATINE P	-												+	·	=	
Lu 174.97 103 Lawrencium Lawrencium La 260.1]	71			22.0]		31.30	Xe	54	3.80	Kr	36 ^{RVPTON}	9.95	Ar	18	0.18	Ne	10 NEON	.003	He	2	18

PERIODIC TABLE OF THE ELEMENTS

CHEW1001/1003

(q)1222