Click on the links for resources on each topic.

2012-J-2:

- Bonding in $\mathrm{H}_{2}-\mathrm{MO}$ theory
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2012-J-3:

- Atomic Electronic Spectroscopy
- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2012-J-4:

- Nuclear and Radiation Chemistry

2012-J-5:

- Nuclear and Radiation Chemistry

2012-J-6:

- Lewis Structures
- VSEPR

2012-J-7:

- Thermochemistry

2012-J-8:

- First and Second Law of Thermodynamics

2012-J-9:

- Polar Bonds
- Ionic Bonding

2012-J-10:

- Chemical Equilibrium

2012-J-11:

- Electrochemistry
- Batteries and Corrosion

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2012
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \cdot.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17, 20 and 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

	Marks	
Pages	Max	Gained
$2-10$	31	

Short answer section

Page	Marks			Marker
	Max	Gained		
11	5			
12	6			
13	4			
14	8			
15	8			
16	6			
18	4			
19	6			
21	9			
22	6			
23	7			
Total	69			
Check Total				

- C_{2} is a reaction intermediate observed in flames, comets, circumstellar shells and the interstellar medium. In 2011, a new state of C_{2} was observed with 4 parallel spins.

How many valence electrons are there in C_{2} ?

Complete the calculated MO diagram for the lowest energy state of C_{2} with 4 parallel spins by inserting the appropriate number of electrons into the appropriate orbitals.

What is the bond order of this state of C_{2} ? \square
Is this state paramagnetic? Give reasoning.

- An "excimer laser" is a type of ultraviolet laser used for lithography, micromachining and eye surgery. In one type of laser, an electrical discharge through HCl and Xe in a helium buffer gas yields metastable XeCl molecules, described like an ion pair. These then emit 308 nm light and dissociate into Xe and Cl atoms.

element	Ionisation energy $/ \mathrm{kJ} \mathrm{mol}^{-1}$	Electron affinity $/ \mathrm{kJ} \mathrm{mol}^{-1}$
Xe	1170.4	-
Cl	1251.1	-349

What energy, in eV, is required to convert a pair of Xe and Cl atoms into Xe^{+}and Cl^{-} ions?

What energy (in eV) is released when the XeCl molecules emit ultraviolet light?
\square
THIS QUESTION CONTINUES ON THE NEXT PAGE.

What is the binding energy (in J) of the XeCl ion pair?

Answer:

If the binding is electrostatic, what is the approximate equilibrium bond length of XeCl if the binding energy is given by the Coulomb formula: $E=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}$?

[^0]- The generation of energy in a nuclear reactor is largely based on the fission of either

Marks 8

Much of the fission yield is concentrated in two peaks, one in the second transition row and the other later in the periodic table. Identify the missing "sister" products of the following daughter nuclides of ${ }^{235} \mathrm{U}$ by writing balanced nuclear equations. The fission reactions are triggered by the absorption of one neutron, and release three neutrons upon disintegration of the short-lived ${ }^{236} \mathrm{U}$ nucleus.

${ }^{141} \mathrm{Ba}$	
${ }^{95} \mathrm{Sr}$	

Many of the fission products are short lived, and spent fuel rods are eventually contaminated by longer-lived species. The radioactivity of spent fuel can be modelled simply by the exponential decay of the ${ }^{137} \mathrm{Cs}$ and ${ }^{90} \mathrm{Sr}$. The \% yields and half lives of these nuclides are given in the table.

nuclide	\%Yield per fission event	Half-life (years)
${ }^{90} \mathrm{Sr}$	4.505	28.9
${ }^{137} \mathrm{Cs}$	6.337	30.23

After use, nuclear fuel rods are stored in ponds of cooling water, awaiting safe disposal. If 3% of the mass of used fuel rods consists of fission products of ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$, what percentage of the mass is made up by each of these nuclides?

THIS QUESTION CONTINUES ON THE NEXT PAGE.

What are the specific activities of ${ }^{90} \mathrm{Sr}$ and ${ }^{137} \mathrm{Cs}$ in $\mathrm{Bq} \mathrm{g}^{-1}$?
\square
Assuming the majority of the activity of a spent fuel rod to be due to these nuclides, what will be the activity of a 1 tonne fuel rod 100 years after placing it in the pond?

- Complete the table below showing the Lewis structures and the predicted shapes of the following species.

Formula	Lewis Structure	Approximate F-X-F bond angle(s)	Name of molecular shape
NF_{3}			
$\mathrm{XeF}_{3}{ }^{+}$			
XeF_{4}			
XeOF_{4}			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- When 20.0 mL of $0.250 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ at $47.5^{\circ} \mathrm{C}$ is added to a constant pressure ("coffee cup") calorimeter containing 200.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ also at $47.5^{\circ} \mathrm{C}$, a white precipitate is formed. The final temperature of the solution is $46.4^{\circ} \mathrm{C}$. Given that the enthalpy of neutralisation of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ is $-56.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and assuming that the specific heat capacity and density of all solutions involved are the same as that of pure water ($\mathrm{c}=4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$ and $\rho=1.000 \mathrm{~g} \mathrm{~mL}^{-1}$), calculate the enthalpy of solution of BaSO_{4} in $\mathrm{kJ} \mathrm{mol}^{-1}$.
- Explain the following phenomena.
(a) When O_{2} dissolves in water at room temperature, the total entropy of the system decreases.
(b) When MgSO_{4} is dissolved in water, there is a very small but measurable decrease in volume.
\square
(c) A crystal (e.g. of NaCl) in its lowest energy configuration (thermodynamic ground state) will always contain defects at finite temperatures.
- Explain, with the aid of a diagram labelling all the key components, how sodium stearate $\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}\right)$ can stabilise long-chain non-polar hydrocarbons ("grease") in water.
\qquad
- Consider the complex $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$. Describe and contrast the origin, strength and directionality of the chemical bonds in this compound (a) between C and N ;
(b) between the manganese and cyanide ions; and (c) between the complex and the potassium counterions.
- Equal volumes of carbon monoxide and hydrogen gas are introduced into a sealed

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Sometime later, total pressure in the flask is 46.4 atm . Calculate the total amount of gas (in mol) in the flask at this later time.

Answer:

When the total pressure in the flask is 46.4 atm , the flask contains 0.22 mol of CH_{4}. Calculate the amount of $\mathrm{H}_{2}(\mathrm{~g})$ (in mol) that was initially introduced into the flask.
\square
In a separate experiment, it is determined that the reaction is in equilibrium when the same 4.5 L flask contains 0.18 mol of $\mathrm{CH}_{4}, 0.24 \mathrm{~mol}^{2}$ of $\mathrm{H}_{2} \mathrm{O}, 0.82 \mathrm{~mol}$ of CO and 0.65 mol of H_{2} at 1200 K . Was the reaction at equilibrium in the previous part of this question? Show all working.

- A voltaic cell is set up at 298 K based on the following half-cell reactions.

$$
\begin{array}{lll}
\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pt}(\mathrm{~s}) & E^{\circ}=+1.18 \mathrm{~V} \\
\mathrm{Rh}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} & \rightleftharpoons \mathrm{Rh}(\mathrm{~s}) & E^{\circ}=+0.76 \mathrm{~V}
\end{array}
$$

Write the overall chemical reaction that takes place in this cell.

Write the same reaction in shorthand voltaic cell notation.

Which metal electrode is acting as the cathode in this reaction?
Calculate the potential of this cell at 298 K , in which the concentration of $\mathrm{Pt}^{2+}(\mathrm{aq})$ is $0.0544 \mathrm{mmol} \mathrm{L}^{-1}$ and the concentration of $\mathrm{Rh}^{3+}(\mathrm{aq})$ is $0.0393 \mathrm{mmol} \mathrm{L}^{-1}$.

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25{ }^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0{ }^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple Prefix Symbol 10^{3} kilo k
10^{6} mega M
10^{9} giga $\quad G$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pt}(\mathrm{s})$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \quad+0.96$
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$
$\operatorname{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s})$
$+0.96$
$\rightarrow+0.92$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) \quad+0.77$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad+0.34$
$\mathrm{BiO}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Bi}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \quad+0.32$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.15$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \quad 0$ (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$
-0.04
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
-0.13
-0.24
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$
$\mathrm{Sc}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$
-0.40
-0.44
-0.74
-0.76
-0.83
-0.89
-1.68
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad-2.71$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s}) \quad-2.87$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry $\begin{aligned} & E=h v=h c / \lambda \\ & \lambda=h / m v \\ & E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right) \\ & \Delta x \cdot \Delta(m v) \geq h / 4 \pi \\ & q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4} \\ & T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm} \end{aligned}$	Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} & E=E^{\circ}-(R T / n F) \times \ln Q \\ & E^{\circ}=(R T / n F) \times \ln K \\ & E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$
Acids and Bases $\begin{aligned} & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \\ & E_{\mathrm{k}}=1 / 2 m V^{2} \end{aligned}$
Radioactivity $\begin{aligned} & t_{1 / 2}=\ln 2 / \lambda \\ & A=\lambda N \\ & \ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t \\ & { }^{14} \mathrm{C} \text { age }=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right) \text { years } \end{aligned}$	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Colligative Properties \& Solutions $\begin{aligned} & \Pi=\mathrm{c} R T \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{c}=k \mathrm{p} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & \Delta_{\text {univ }} S^{\circ}=R \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}\left(\frac{R T}{100}\right)^{\Delta n} \end{aligned}$
Miscellaneous $\begin{aligned} & A=-\log \frac{I}{I_{0}} \\ & A=\varepsilon c l \\ & E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}} \end{aligned}$	Mathematics If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$ Area of circle $=\pi r^{2}$ Surface area of sphere $=4 \pi r^{2}$

								$[18 Z]$ SCT wanurswava $0[1]$	［89Z］ AW wnaxaus $60[$				$\begin{gathered} {[\boxed{[z q]}} \\ \mathbf{q u (1} \\ \text { wavana } \\ \text { ¢0I } \end{gathered}$		E0I－68	$\begin{gathered} {[0.9 z z]} \\ \text { ey } \\ \text { wnava } \\ 88 \end{gathered}$	$\begin{gathered} {[0 \cdot \varepsilon z z]} \\ \text { IH } \\ \text { monvas } \\ L 8 \end{gathered}$
［0＇zzz］	［000Iz］	［0．0ız］	86.80 Z	でLOZ	LE＇t0	65＇002	L696I	60＇¢61	てでて6I	て＇06I	で98I	¢8＇E8I	¢6．08I	67＊8LI		セモ゙LEI	16＇z\＆1
uy	1 V	$\mathbf{O d}_{\text {d }}$	Ig	qd	IL	${ }_{\mathbf{S}}^{\mathbf{S}} \mathbf{H}$	nV	7 d	II	sO	OY	M	$\mathbf{B}_{\mathbf{L}}$	JH		Eg	s？
voava	зnuvisv	wankood	ниакsı	ava	ผпптvн	кมาวงям	атоэ	wanuvid	мпйมี	майso	мапкзня	vassona	wกาwavı	wanksy		wnava	wniss
98	S8	†8	E8	Z8	I8	08	6 L	8L	LL	92	SL	$\dagger L$	εL	ZL	IL－LS	95	SS
$0 \varepsilon^{*}$ IEI	06.92 I	09＊$\angle Z \mathrm{I}$	¢L＇ıZI	69＊8II	$28^{\prime}+11$	0ヶ＇てII	L8＇L0I	†＇90］	16＇z01	L0＇101	［1686］	セ6．¢6	I6＇Z6	てで16	16.88	29＇L8	Lt＇s8
$\boldsymbol{\partial}$	I	$\boldsymbol{\partial J}_{\mathbf{L}}$	qS	US	UI	p？	¢ิV	$\mathbf{p}_{\text {d }}$	पУ	ny	$\mathbf{0}_{\mathbf{L}}$	OL	qN	IZ	\}	． IS	qY
vovax	avioor	мппйттد	avonus	Nu	wnanv	wпйку	халия	wnaverva	шппони	ผппзнй	мпихьюз	мамзаятою		wavoоит	мппиця	ผпихоия	маниямя
tS	ES	ZS	IS	OS	67	8t	L \downarrow	9t	St	七t	$\varepsilon \downarrow$	で	It	0t	6ε	8E	LE
08＇¢8	06\％ 6	968L	26＇t	69＇ZL	ZL＇69	6ع＇S9	¢¢＇£9	69．8s	E68S	¢8．cs		00＇zs	t60¢	88＇Lt	$96 . \downarrow t$	800t	01．68
． H $^{\text {d }}$	Jg	əS	SV	əワ	PD	$\mathbf{u}_{\mathbf{Z}}$	nว	！${ }^{\text {N }}$	0	${ }^{\boldsymbol{H}}$	uW	do	\}	！L	${ }^{\mathbf{3} S}$	b ${ }^{\text {P }}$	Y
моихху	зхйоя	мамхзтя	эงสsavv	мппкххва	ผลก7v	эงız	หงado		${ }^{\text {九тvao }}$	Noan	${ }^{\text {ssangovn }}$	манохи	$\underset{\text { wnawws }}{ }$	พลกvıu	мапамs	мпวтт	winssios
$9 \mathcal{1}$	SE	$\dagger \mathcal{L}$	EE	てE	IE	0ε	62	87	LZ	97	¢Z	\dagger ¢	εZ	ZZ	IZ	02	6I
¢66E	St＇SE	L0＇て¢	L6：0¢	$60^{\circ} 87$	86.97											เどャて	66.72
dV	ID	S	d	！S	IV											$\mathbf{o l}^{\mathbf{o}} \mathbf{N}$	B_{N}
vooav	зхвоот	anans	sмıопиsоия	vorrus												мпиรงขvı	wnaos
8I	LI	9I	¢ I	\dagger I	εI											ZI	I I
81．02	00．61	00．91	I0＇tI	10＇zI	1801											2106	It69
$\boldsymbol{\partial N}$	H	0	N	\bigcirc	g											əg	！ 7
noas		งงงхх	งзэоиı	мовav	งоиоя											мงเтихз	ผхпии
0I	6	8	L	9	\bigcirc											\dagger	ε
$\varepsilon 00$＇t																	${ }^{800}{ }^{\circ} \mathrm{I}$
$\boldsymbol{\partial H}$																	H
клитй																	зэохан
\checkmark																	I
8I	LI	9I	SI	†I	EI	ZI	II	0I	6	8	L	9	S	t	\mathcal{E}	7	I

[^0]: Answer:

